Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

微积分笔记(23)——参数曲线初步

微积分笔记(23)——参数曲线初步

参数曲线初步

参数曲线

Rn——n 维欧式空间。

n=2:平面。

n=3:空间。

向量 vRn{n=2r=(x,y)n=3r=(x,y,z)

Rn 中的参数曲线

Γ:r=r(t),αtβ

或写成坐标形式:
n=2,Γ:x=x(t),y=y(t),t[α,β]n=3,Γ:x=x(t),y=y(t),z=z(t),t[α,β]

特例

特例 1n=2
Γ:y=f(x),axb
表示为参数形式:
Γ:x=t,y=f(t),atb

r=(t,f(t)),atb
特例 2
Γ:r=f(θ),αθβ
也就是极坐标曲线。

化为直角坐标形式:
Γ:x=f(θ)cosθ,y=f(θ)sinθ,αθβ

曲线切向量

切向量

Γ:r=r(t),αtβRn 中一参数曲线。

固定 t0[α,β],r(t0)Γ,任取 Δt0t0+Δt[α,β],则 r(t0+Δt)Γ,r(t0+Δt)r(t0)Γ 上一段割线。
lim
若存在且不为零向量,称为 \Gamma\vec{r} (t_0) 点的切向量

写成坐标形式(n = 3):
\Gamma : \vec{r} = \vec{r} (t) = (x(t),y(t),z(t))
则:
\vec{r}^{\prime} (t_0) = (x^{\prime}(t_0),y^{\prime}(t_0),z^{\prime}(t_0))
由此得到 \Gamma\vec{r} (t_0) 点的切线方程
L :\vec{r} = \vec{r} (t_0) + \lambda \vec{t}^{\prime}(t_0),\lambda \in \mathbb{R}
\vec{r} (t_0) = (x_0,y_0,z_0),则可以将 L 表示成直角坐标形式:
\dfrac{x – x_0}{x^{\prime}(t_0)} = \dfrac{y – y_0}{y^{\prime}(t_0)} = \dfrac{z – z_0}{z^{\prime}(t_0)}
特例n=2
y – y_0 = \dfrac{y^{\prime}(t_0)}{x^{\prime}(t_0)} (x – x_0)
又若 \Gamma : y = f(x),x^{\prime} = 1,y^{\prime} = f^{\prime}(x)
\therefore y – y_0 = f^{\prime}(x_0) (x – x_0)

光滑曲线(”每一点都有切向量“)

\Gamma : \vec{r} = \vec{r} (t) = (x(t),y(t),z(t)),\alpha \le t \le \beta

x(t),y(t),z(t) \in C^1[\alpha,\beta],且:
\| \vec{r}^{\prime} (t) \| = \sqrt{x^{\prime}(t)^2 + y^{\prime}(t)^2 + z^{\prime}(t)^2} \not = 0
则称 \Gamma光滑曲线

\vec{r}(t_1) = \vec{r}(t_2)t_1 \not = t_2——\Gamma 有自交点。

今后讨论通常排除自交曲线,除非t_1 = \alpha,t_2 = \beta

光滑曲线的弧长

给定(光滑)曲线 \Gamma : \vec{r} = \vec{r} (t),\alpha \le t \le \beta

问题

\Gamma 的弧长,s(\Gamma) = ?

弧长的定义(用折线逼近)

  1. \Gamma 分段,分点依次为 P_0,P_1,P_2,\cdots,P_n(\forall n \in \mathbb{N})

  2. |P_{i – 1} P_i| 表示 P_{i – 1}P_i 的距离,令 \overset{\LARGE{\frown}}{P_{i – 1} P_i} 表示 P_{i – 1}P_i 沿 \Gamma 的弧长,则 |P_{i – 1}P_i| \thickapprox \overset{\LARGE{\frown}}{P_{i – 1} P_i}

  3. 求和 s(r) = \sum\limits_{i = 1}^n \overset{\LARGE{\frown}}{P_{i – 1} P_i} = \sum_{i = 1}^n |P_{i – 1}P_i|

  4. \| \pi \| = \max\limits_{i = 1,\cdots,n} |P_{i – 1} P_i|,定义:
    s(r) = \lim_{\| \pi \| \to 0} \sum_{i = 1}^n |P_{i – 1} P_i|

光滑曲线弧长的计算

\Gamma : \vec{r} = \vec{r} (t) = (x(t),y(t)),\alpha \le t \le \betax(t),y(t) \in C^1[a,b],x^{\prime}(t)^2 + y^{\prime}(t)^2 \not = 0

  1. [\alpha,\beta] 上的有限分割:
    \pi : \alpha = t_0 < t_1 < \cdots < t_n = \beta,\Delta t_i = t_i - t_{i - 1} 相应得到 \Gamma 上的分点:\vec{r}(t_0),\vec{r}(t_1),\cdots,\vec{r}(t_n),\| \pi \| = \max \Delta t_i

  2. \| \vec{r}(t_i) – \vec{r}(t_{t – 1}) \| = \sqrt{(x(t_i) – x(t_{i – 1}))^2 + (y(t_i) – y(t_{i – 1}))^2}

    由中值定理,\exists \xi_i,\eta_i \in [t_{i – 1},t_i] 使得:
    \| \vec{r}(t_i) – \vec{r}(t_{i – 1}) \| = \sqrt{x^{\prime}(\xi_i)^2 + y^{\prime}(\eta_i)^2} \Delta t_i,i = 1,2,\cdots,n

  3. 由此得到(可以证明):
    s(r) = \lim_{\| \pi \| \to 0} \sum_{i = 1}^n \sqrt{x^{\prime}(\xi_i)^2 + y^{\prime}(\eta_i)^2} \Delta t_i = \int_\alpha^\beta \sqrt{x^{\prime}(t)^2 + y^{\prime}(t)^2} \mathrm{d} t

结论:令 \Gamma : \vec{r} = \vec{r} (t),\alpha \le t \le \beta 为光滑曲线,则 \Gamma弧长
s(r) = \int_\alpha^\beta \| \vec{r}^{\prime}(t) \| \mathrm{d} t
记号
\mathrm{d} s = \| \vec{r}^{\prime}(t) \| \mathrm{d} t = \| \mathrm{d} \vec{r} \|
称为弧长微元

特例 1n = 2
\Gamma : y = f(x),a \le x \le b,f \in C^1[a,b] \\ \mathrm{d} s = \sqrt{1 + f^{\prime}(x)^2} \mathrm{d} x \\ s(r) = \int_a^b \sqrt{1 + f^{\prime}(x)^2} \mathrm{d} x
特例 2n = 2,极坐标曲线:
\Gamma : r = r(\theta),\alpha \le \theta \le \beta
参数表示:
\Gamma : x = r(\theta) \cos \theta,y = r(\theta) \sin \theta \\ \dfrac{\mathrm{d} x}{\mathrm{d} \theta} = r^{\prime} \cos \theta – r \sin \theta,\dfrac{\mathrm{d} y}{\mathrm{d} \theta} = r^{\prime} \sin \theta + r \cos \theta \\ (\dfrac{\mathrm{d} x}{\mathrm{d} \theta})^2 + (\dfrac{\mathrm{d} y}{\mathrm{d} \theta})^2 = r^{\prime}(\theta)^2 + r(\theta)^2 \\ \mathrm{d} s = \sqrt{r^{\prime}(\theta)^2 + r(\theta)^2} \mathrm{d} \theta \\ s(r) = \int_\alpha^\beta \sqrt{r^{\prime}(\theta)^2 + r(\theta)^2} \mathrm{d} \theta

 

点赞 1

No Comments

Add your comment