微积分笔记(53)——曲面积分(3)
Contents
曲面积分
Gauss 公式
再观察:Green 公式
已知:
$$
(\mathrm{d} x, \mathrm{d} y) = \pmb{\tau} \, \mathrm{d} s = (\tau_1, \tau_2) \, \mathrm{d} s
$$
所以:
$$
(\mathrm{d} y, - \mathrm{d} x) = (\tau_2, -\tau_1) \, \mathrm{d} s = \pmb{n} \, \mathrm{d} s
$$
代入 Green 公式可得第一型积分形式:
$$
\oint_{\partial D} (\pmb{F} \cdot \pmb{\tau}) \, \mathrm{d} s = \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, \mathrm{d} x \, \mathrm{d} y \\
\oint_{\partial D} (\pmb{F} \cdot \pmb{n}) \, \mathrm{d} s = \iint_D \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} \right) \, \mathrm{d} x \, \mathrm{d} y
$$
即将的推广
- 由平面区域 $D$ 推广到曲面 $S$——Stokes 公式。
- 由 $2$ 维区域推广到 $3$ 维区域——Gauss 公式。
Gauss 公式(奥高公式,散度定理)
令 $\Omega \subseteq \mathbb{R}^3$ 为有界区域,其边界 $\partial \Omega$ 为定向封闭曲面外侧,又设 $\pmb{F} = (P, Q, R) = C^1(\Omega, \mathbb{R}^3)$。
则:
$$
\oint_{\partial \Omega} (\pmb{F} \cdot \pmb{n}) \, \mathrm{d} \sigma = \int_\Omega \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) \, \mathrm{d} \mu
$$
也即:
$$
\def\oiint{\mathop{{\int\!\!\!\!\!\int}\mkern-21mu \bigcirc}}
\oiint\nolimits_{\partial \Omega} P \, \mathrm{d} y \, \mathrm{d} z + Q \, \mathrm{d} z \, \mathrm{d} x + R \, \mathrm{d} x \, \mathrm{d} y = \iiint_\Omega \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) \, \mathrm{d} x \, \mathrm{d} y \, \mathrm{d} z
$$
其中 $\displaystyle \oint_{\partial \Omega}, \oiint\nolimits_{\partial \Omega}$ 都表示沿封闭曲面 $\partial \Omega$ 的积分。
证明思路与 Green 公式类似——往证 $P, Q, R$ 各自的积分等式。
Gauss 公式证明
仅证明:
$$
\iint_{\partial \Omega} R \, \mathrm{d} x \, \mathrm{d} y = \iiint_\Omega \frac{\partial R}{\partial z} \, \mathrm{d} x \, \mathrm{d} y \, \mathrm{d} z
$$
证明:先设区域 $\Omega$ 有如下表示(沿 $z$ 轴方向柱形区域):
$$
\Omega = \{(x, y, z) : z_1(x, y) \le z \le z_2(x, y), (x, y) \in D\}
$$
其中 $D$ 为 $xy$ 平面上有界区域,$z_1, z_2 \in C(D)$,且 $z_1 \le z_2$。
这时边界曲面 $\partial \Omega = S_1 + S_2 + S_3$:
$$
S_1 : z = z_1(x, y), (x, y) \in D, 法向朝下 \\
S_2 : z = z_2(x, y), (x, y) \in D, 法向朝上
$$
在 $S_3$ 上法向量 $\pmb{n} = (\cos \alpha, \cos \beta, 0)$ 且:
$$
\iint_{S_3} R \, \mathrm{d} x \, \mathrm{d} y = 0
$$
所以:
$$
\iint_{\partial \Omega} R \, \mathrm{d} x \, \mathrm{d} y \\
= \iint_{S_1} R \, \mathrm{d} x \, \mathrm{d} y + \iint_{S_2} R \, \mathrm{d} x \, \mathrm{d} y \\
= -\iint_{D} R(x, y, z_1(x, y)) \, \mathrm{d} x \, \mathrm{d} y + \iint_{D} R(x, y, z_2(x, y)) \, \mathrm{d} x \, \mathrm{d} y
$$
下面直接计算验证公式。
三重积分化为累次积分:
$$
\iiint_\Omega \frac{\partial R}{\partial z} \, \mathrm{d} x \, \mathrm{d} y \, \mathrm{d} z \\
= \iint_D \, \mathrm{d} x \, \mathrm{d} y \int_{z_1(x, y)}^{z_2(x, y)} \frac{\partial R}{\partial z} \, \mathrm{d} z \\
= \iint_{D} [R(x, y, z_2(x, y)) - R(x, y, z_1(x, y))] \, \mathrm{d} x \, \mathrm{d} y \\
= \iint_{\partial \Omega} R \, \mathrm{d} x \, \mathrm{d} y
$$
这说明当 $\Omega$ 是沿 $z$ 轴方向柱形区域时公式成立。
当 $\Omega$ 是一般有界区域时,可以将其分割成为有限多个沿 $z$ 轴方向的柱形子区域:
$$
\Omega = \bigcup_{i = 1}^k \Omega_i
$$
在每个 $\Omega_i$ 上有:
$$
\iint_{\partial \Omega_i} R \, \mathrm{d} x \, \mathrm{d} y = \iiint_{\Omega_i} \frac{\partial R}{\partial z} \, \mathrm{d} x \, \mathrm{d} y \, \mathrm{d} z
$$
关于 $i$ 求和得到:
$$
\sum_{i = 1}^k \iint_{\partial \Omega_i} R \, \mathrm{d} x \, \mathrm{d} y = \sum_{i = 1}^k \iiint_{\Omega_i} \frac{\partial R}{\partial z} \, \mathrm{d} x \, \mathrm{d} y \, \mathrm{d} z = \iiint_\Omega \frac{\partial R}{\partial z} \, \mathrm{d} x \, \mathrm{d} y \, \mathrm{d} z
$$
注意:位于 $\Omega$ 内部的 $\Omega_i$ 的边界必成对出现,法向相反,这样位于 $\Omega$ 内部的 $\partial \Omega_i$ 上曲面积分必两两抵消:
$$
\therefore \sum_{i = 1}^k \iint_{\partial \Omega_i} R \, \mathrm{d} x \, \mathrm{d} y = \iint_{\partial \Omega} R \, \mathrm{d} x \, \mathrm{d} y = \iiint_\Omega \frac{\partial R}{\partial z} \, \mathrm{d} x \, \mathrm{d} y \, \mathrm{d} z \ \ \ \square
$$
理论应用
应用 1:
取 $\pmb{F} = \mathrm{grad} \, u, u \in C^2(\Omega)$,则:
$$
\pmb{F} \cdot \pmb{n} = \mathrm{grad} \, u \cdot \pmb{n} = D_{\pmb{n}} u
$$
因此:
$$
\oint_{\partial \Omega} \frac{\partial u}{\partial \pmb{n}} \, \mathrm{d} \sigma = \int_\Omega \Delta u \, \mathrm{d} \mu
$$
其中 $\Delta$ 为 Laplace 算子:
$$
\Delta := \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}
$$
应用 2:
取 $\pmb{F} = v \, \mathrm{grad} \, u, u, v \in C^2(D)$,则:
$$
\pmb{F} \cdot \pmb{n} = v \, \mathrm{grad} \, u \cdot \pmb{n} = v D_{\pmb{n}} u
$$
所以:
$$
\oint_{\partial D} v \frac{\partial u}{\partial \pmb{n}} \, \mathrm{d} s = \int_D \left(v \Delta u + \frac{\partial v}{\partial x} \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \frac{\partial u}{\partial y} \right) \, \mathrm{d} \sigma
$$
推论:若 $u$ 是 $D$ 上调和函数($\Delta u = 0$),则取 $u = v$ 得:
$$
\oint_{\partial D} u \frac{\partial u}{\partial \pmb{n}} \, \mathrm{d} s = \int_D \| \mathrm{grad} \, u \|^2 \, \mathrm{d} \sigma
$$
又若在 $D$ 的边界上 $u = 0$,则在 $D$ 内 $u = 0$。
应用 3:
对于 $u, v \in C^2(D)$,上面已导出:
$$
\oint_{\partial D} v \frac{\partial u}{\partial \pmb{n}} \, \mathrm{d} s = \int_D \left(v \Delta u + \frac{\partial v}{\partial x} \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \frac{\partial u}{\partial y} \right) \, \mathrm{d} \sigma
$$
交换 $u, v$ 的位置,得到:
$$
\oint_{\partial D} u \frac{\partial v}{\partial \pmb{n}} \, \mathrm{d} s = \int_D \left(u \Delta v + \frac{\partial u}{\partial x} \frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \frac{\partial v}{\partial y} \right) \, \mathrm{d} \sigma
$$
二式相减得到 Green 第二公式:
$$
\oint_{\partial D} \left(v \frac{\partial u}{\partial \pmb{n}} - u \frac{\partial v}{\partial \pmb{n}} \right) \, \mathrm{d} s = \int_D (v \Delta u - u \Delta v) \, \mathrm{d} \sigma
$$
No Comments